Approximate and Closed-Form Solutions of Newell-Whitehead-Segel Equations via Modified Conformable Shehu Transform Decomposition Method
نویسندگان
چکیده
In this study, we introduced a novel scheme to attain approximate and closed-form solutions of conformable Newell-Whitehead-Segel (NWS) equations, which belong the most consequential amplitude equations in physics. The Shehu transform (CST) Adomian decomposition method (ADM) are combined proposed method. We call it (CSDM). To assess efficiency consistency recommended method, demonstrate 2D 3D graphs as well numerical simulations derived solutions. As result, CSDM demonstrates that is useful simple mathematical tool for getting exact analytical linear-nonlinear fractional partial differential (PDEs) given kind. convergence absolute error analysis series also offered.
منابع مشابه
A Comparison Between Fourier Transform Adomian Decomposition Method and Homotopy Perturbation ethod for Linear and Non-Linear Newell-Whitehead-Segel Equations
In this paper, a comparison among the hybrid of Fourier Transform and AdomianDecomposition Method (FTADM) and Homotopy Perturbation Method (HPM) is investigated.The linear and non-linear Newell-Whitehead-Segel (NWS) equations are solved and the results arecompared with the exact solution. The comparison reveals that for the same number of componentsof recursive sequences, the error of FTADM is ...
متن کاملThe Newell-whitehead-segel Equation for Traveling Waves
An equation to describe nearly 1D traveling-waves patterns is put forward in the form of a dispersive generalization of the Newell-Whitehead-Segel equation. Transverse stability of plane waves is shown to be drastically altered by the dispersion. A necessary transverse Benjamin-Feir stability condition is obtained. If it is met, a quarter of the plane-wave existence band is unstable, while thre...
متن کاملConstuction of solitary solutions for nonlinear differential-difference equations via Adomain decomposition method
Here, Adomian decomposition method has been used for finding approximateand numerical solutions of nonlinear differential difference equations arising inmathematical physics. Two models of special interest in physics, namely, theHybrid nonlinear differential difference equation and Relativistic Toda couplednonlinear differential-difference equation are chosen to illustrate the validity andthe g...
متن کاملSystematic derivation of a rotationally covariant extension of the two-dimensional Newell-Whitehead-Segel equation.
An extension of the Newell-Whitehead-Segel amplitude equation covariant under abritrary rotations is derived systematically by the renormalization group method. Typeset using REVTEX 1 The present day theory of pattern formation to a large degree rests on the derivation and exploitation of amplitude equations. In particular, for the formation of 2-dimensional patterns by spontaneous symmetry bre...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2022
ISSN: ['1026-7077', '1563-5147', '1024-123X']
DOI: https://doi.org/10.1155/2022/6752455